12 research outputs found

    The Space Object Ontology

    Get PDF
    Achieving space domain awareness requires the identification, characterization, and tracking of space objects. Storing and leveraging associated space object data for purposes such as hostile threat assessment, object identification, and collision prediction and avoidance present further challenges. Space objects are characterized according to a variety of parameters including their identifiers, design specifications, components, subsystems, capabilities, vulnerabilities, origins, missions, orbital elements, patterns of life, processes, operational statuses, and associated persons, organizations, or nations. The Space Object Ontology provides a consensus-based realist framework for formulating such characterizations in a computable fashion. Space object data are aligned with classes and relations in the Space Object Ontology and stored in a dynamically updated Resource Description Framework triple store, which can be queried to support space domain awareness and the needs of spacecraft operators. This paper presents the core of the Space Object Ontology, discusses its advantages over other approaches to space object classification, and demonstrates its ability to combine diverse sets of data from multiple sources within an expandable framework. Finally, we show how the ontology provides benefits for enhancing and maintaining longterm space domain awareness

    Ontology and Cognitive Outcomes

    Get PDF
    The term ‘intelligence’ as used in this paper refers to items of knowledge collected for the sake of assessing and maintaining national security. The intelligence community (IC) of the United States (US) is a community of organizations that collaborate in collecting and processing intelligence for the US. The IC relies on human-machine-based analytic strategies that 1) access and integrate vast amounts of information from disparate sources, 2) continuously process this information, so that, 3) a maximally comprehensive understanding of world actors and their behaviors can be developed and updated. Herein we describe an approach to utilizing outcomes-based learning (OBL) to support these efforts that is based on an ontology of the cognitive processes performed by intelligence analysts. Of particular importance to the Cognitive Process Ontology is the class Representation that is Warranted. Such a representation is descriptive in nature and deserving of trust in its veridicality. The latter is because a Representation that is Warranted is always produced by a process that was vetted (or successfully designed) to reliably produce veridical representations. As such, Representations that are Warranted are what in other contexts we might refer to as ‘items of knowledge’

    ErbB2 Is Required for Muscle Spindle and Myoblast Cell Survival

    No full text
    Signaling mediated by ErbB2 is thought to play a critical role in numerous developmental processes. However, due to the embryonic lethality associated with the germ line inactivation of erbB2, its role in adult tissues remains largely obscure. Given the expression of ErbB2 at the neuromuscular junction, we have created a muscle-specific knockout to assess its role there. This resulted in viable mice with a progressive defect in proprioception due to loss of muscle spindles. Interestingly, a partial reduction of ErbB2 levels also reduced the number of muscle spindles. Although histological analysis of the muscle revealed an otherwise normal architecture, induction of muscle injury revealed a defect in muscle regeneration. Consistent with these observations, primary myoblasts lacking ErbB2 exhibit extensive apoptosis upon differentiation into myofibers. Taken together, these results illustrate a dual role for ErbB2 in both muscle spindle maintenance and survival of myoblasts

    The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration

    No full text
    The active thyroid hormone 3,5,3′ triiodothyronine (T3) is a major regulator of skeletal muscle function. The deiodinase family of enzymes controls the tissue-specific activation and inactivation of the prohormone thyroxine (T4). Here we show that type 2 deiodinase (D2) is essential for normal mouse myogenesis and muscle regeneration. Indeed, D2-mediated increases in T3 were essential for the enhanced transcription of myogenic differentiation 1 (MyoD) and for execution of the myogenic program. Conversely, the expression of T3-dependent genes was reduced and after injury regeneration markedly delayed in muscles of mice null for the gene encoding D2 (Dio2), despite normal circulating T3 concentrations. Forkhead box O3 (FoxO3) was identified as a key molecule inducing D2 expression and thereby increasing intracellular T3 production. Accordingly, FoxO3-depleted primary myoblasts also had a differentiation deficit that could be rescued by high levels of T3. In conclusion, the FoxO3/D2 pathway selectively enhances intracellular active thyroid hormone concentrations in muscle, providing a striking example of how a circulating hormone can be tissue-specifically activated to influence development locally

    Creatine increases IGF-I and myogenic regulatory factor mRNA in C(2)C(12) cells.

    Get PDF
    Addition of creatine to the differentiation medium of C(2)C(12) cells leads to hypertrophy of the myotubes. To investigate the implication of insulin-like growth factor I (IGF-I) and myogenic regulatory factors (MRFs) in this hypertrophy, their mRNA levels were assessed during the first 72 h of differentiation. Creatine significantly increased the IGF-I mRNA level over the whole investigated period of time, whereas the MRF mRNA levels were only augmented at precise moments, suggesting a general activation mechanism for IGF-I and a specifically regulated mechanism for MRF transcription. Our results suggest therefore that creatine-induced hypertrophy of C(2)C(12) cells is at least partially mediated by overexpression of IGF-I and MRFs

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally
    corecore